
ISRAEL JOURNAL OF MATHEMATICS 94 (1996), 21-27 

ON NONIMMERSIBILITY OF COMPACT HYPERSURFACES 
INTO A BALL OF A SIMPLY CONNECTED SPACE FORM* 

BY 

F E R N A N D O  GIMI~NEZ 

Departamento de Matemdtica Aplicada 
E.T.S.I. Industriales, Universidad Politdcnica de Valencia, Valencia, Spain 

AND 

V I C E N T E  MIQUEL 

Departamento de Geometr~a y Topolog~a 
Universidad de Valencia, Burjasot, Valencia, Spain 

e-mail: miquel@mac.uv.es 

ABSTRACT 

We give a nonimmers ib i l i ty  theorem of a compact  manifo ld  wi th  non- 

negative scalar curvature bounded from above into a geodesic ball of a 

s imply connected space form. 

1. I n t r o d u c t i o n  

There are many theorems about nonimmersibility of compact riemannian mani- 

folds with sectional curvature bounded from above inside a metric ball of a sim- 

ply connected space form (see [Ja], [Be1 and 2], [JK], [Ko] and [CI]). Recently, 

S. Deshmukh and M. A. A1-Gwaiz ([DA]) have proved the following theorem, 

which works with Ricci curvatures instead of sectional curvatures, 

THEOREM A ([DA]): Let C ~ be the Euclidean space of dimension 2n and M be 

a compact (2n - 1)-dimensional Riemannian manifold whose Ricci curvature p 

and scalar curvature T satisfy p(X, X )  + T >_ 0 and p(X, X)  < 2(n - 1)R -2 for 
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each unit vector field X on M and some positive constant R. Then no isometric 

immersion of M into C ~ is contained in a ball of radius R. 

In this note we give a generalization of this theorem in the following sense: we 

remove the restriction of even dimension of the ambient manifold and allow it to 

be any simply connected space form. Moreover, we remark that  the upper bound 

on the Ricci curvature can be weakened to an inequality between the total  scalar 

curvature and the volume of M. 

More precisely, given a real number A, let us consider the function 

s in(v~t )  if A > 0 

s~( t )=  t if A = 0  

s i n h ( v ~ t )  if A < 0, 

and let K '~ (A) be the simply connected space form of dimension n and sectional 

curvature A. Then we prove the following theorem: 

THEOREM 1: Let M be a compact (n - 1)-dimensional Riemannian manifold 

whose Ricci curvature p and scalar curvature T satisfy 

p ( X , X )  + T > (n + l ) ( n -  2)A (and T >_ O if  A < O) 

for each unit vector field X on M and 

M T d M  (n -- 1)(n -- 2) vol(M)s-~2(R) _< 

for some positive constant R (R <_ (1/x/A)arcsin v/n / ( n + 1) ira > 0). I f  there is 

an isometric immersion r  into K"(A) contained in a geodesic ball of  radius 

R, then r  is the boundary of this geodesic ball. 

For R as in Theorem 1, let BR(o) be a geodesic ball of radius R and centre 

o in K n (A). Let r: K '~ (A) ~ R be the distance to o in K n (A), and denote also 

by r the composition r o r r being an isometric immersion of M in K n (A). Let 

N be a unit normal vector field to M. Let us denote by Or the gradient of r in 

K n (A), and by 0 [  the vector field on M defined by 

O[(m) = r162  - (0~(r N ( m ) ) N ( m ) )  for every m E M. 
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Let us define the tangent vector field u on M by u(m) = s~(r(m))O~(m). Even 

if N is defined only up to a sign, u is globally well defined. 

Theorem 1 is an obvious consequence of the following one: 

THEOREM 2: Let M be a compact (n - 1)-dimensional Riemannian manifold 

whose Ricci curvature p and scalar curvature r satisfy 

(2.1) IM{P(U,u) + rlul2IdM >_ (n + x)(n - 2)A / g  ]U]2dM 

(and r >_ 0 ira < O) and 

(2.2) IM rdM <_ (n - 1)(n - 2) vol(M)s-s 

If  there is an isometric immersion r of M into K n (A) contained in BR(o), then 

r  is the boundary of this geodesic ball. 

Theorem 2 will be proved in section 3. In section 2 we shall prove a new 

Minkowski formula for hypersurfaces of K ~ (A). This is one of the main ingredients 

in the proof of Theorem 2. Another one is the choice of the vector field u, different 

from that  used in [DA], which allows us to drop the condition of even dimension. 

The third ingredient is the integral formula (10), taken from [Ya] and used before 

by S. Deshmukh and M. A. A1-Gwaiz in [DA]) in their proof of Theorem A. 

2. G e n e r a l  M i n k o w s k i  f o r m u l a e  

Let ~: M ~ M be an isometric immersion of a compact  Riemannian manifold 

M, of dimension n - 1, into an n-dimensional Riemannian manifold M.  Let 

o E M and let r, 0~ and 0 [  be defined on M and on M as in section 1, where the 

role of K ~ (A) is played by M.  Let ~ and ~ denote the covariant derivative and 

the Laplacian respectively on M. Let us denote by V and A the corresponding 

operators on M. Let N be a unit normal vector on M and let L be the associated 

Weingarten map of M in M. In the local computat ions below, we shall denote 

by the same letter a local vector field X on M and its image r  

If  we denote by S(r) the (1, 1)-tensor on M defined by 

S(r)(A) = --VAOr for every A tangent to M, 

then the following formula is well known (cf. [GW]): 

(1) ~2r(A, B) = - (S (r )A ,  B) for every A, B tangent to M,  



24 F. GIMl~NEZ AND V. M I Q U E L  Isr. J. Math .  

which implies 

(2) ~ r  = tr S(r). 

Let us observe that S(r)O~ = 0 and S(r) restricted to the vectors tangent to the 

geodesic sphere OB~(o) of M of centre o and radius r is the Weingarten map of 

this sphere, and tr S(r) is (n - 1) times the mean curvature of this sphere. 

On the other hand, an easy computation shows that 

(3) V2r(X, Y) = V2r(X,  Y) + (LX,  Y)(cqr, N) 

for every X, Y tangent to M, where L is the Weingarten map of the immersion 

r  , M .  
If n- -1  {ei}i=l is a local orthonormal frame of vector fields tangent to M and H 

denotes the mean curvature of M, from (2) and (3), it follows that 

n--1  

(4) Ar  = E ( S ( r ) ( e l -  (ei, Or)O~), ei) - (n - I )H(N,  0~). 
i = l  

If f (r)  is any C 2 function, it follows from (4) that 

n--1 

(5) A f ( r )  = -f"(r)]O•[ 2 + f ' { E ( S ( r ) ( e l  - (ei, 0~}0~), ei) - (n - 1 ) g ( g ,  0~)}. 
i=1 

Integration of this formula over M gives what we could call a general Minkowski 

formula. Since we are interested in a particular one when M = K '~ (A) we must 

select an appropriate function f (r) .  Before doing it we introduce some new 

functions 
{ cos(v/At) if A > 0 

cA(t)= 1 i f A = O  

cosh( Iv~ t )  if a < O, 

{ v ~ c o t ( v ~ t )  if A > 0 

coA(t) - s~(t___~) _ cA(t) = l i t  if A = 0 

sA(t) sA(t) V / ~ c o t h ( [ v / ~ t )  if A < O. 

The functions sA and cA satisfy the following computation rules: 

s ~ : c x ,  c A -AsA, c ~ + A s 2 = I ,  84A 8ACA, C4A:C2--)~8 2. 
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In  ]K n (A), the opera to r  S(r )  restr icted to the tangent  space of a geodesic sphere 

OBT(o) of centre 0 and radius r is given by (cf. [Gr]) 

(6) S(r )  = - c o x ( r ) I d .  

Since ei - (ei, 0~)0~ is tangent  to OB~(o), f rom (5) and (6) one gets 

(7) A f ( r )  = ( - f " ( r )  + co;~(r)f '(r))lO~l 2 - (n - 1 ) (co~(r ) f '  + H ( g , f ' O ~ ) ) .  

Then,  if we take  f '  = 84A ( tha t  is f = -c4~/ (4A)  if A # 0 and  f ( r )  = (1 /2 ) r  2 if 

A = 0), we have 

(8) A f ( r )  = As2(r)lO~] 2 - (n - 1)c2(r) - (n - 1 )HcA(r ) (N ,  s~(r)O~). 

Now we denote  a ( m )  = ( N ( m ) ,  s~(r (m))O~(m))  for every m C M and u as in 

section 1. Al though N (and then  a and H )  is (globally) defined only up to a 

sign, the p roduc t  a H is globally well defined. Then,  we can in tegra te  (8) over 

M and app ly  Stokes T h e o r e m  to get 

(9) 0 = / i T s  -- (n -- 1)cx(cA + a H ) } d M .  

This  special Minkowski formula  differs f rom the s t anda rd  ones (cf. [Hs] and [MR]) 

in the first s u m m a n d  and in the factor  cA. I t  is just  this factor  cA which we need 

to combine formula  (9) wi th  formula  (10) below, and this is the reason why we 

use the funct ion f = -c4~/ (4A) .  

3. P r o o f  o f  T h e o r e m  2 

First ,  let us suppose  t ha t  u(m)  = 0 for every m E M.  Then  0 [  -- 0 and 

d r ( X )  = (0T, X} = 0 for every X tangent  to M.  Then  r is cons tant  on M and 

M is a geodesic sphere of radius  r in K ~ (A). From the Gauss  equat ion  for a 

submanifold,  one gets tha t ,  in this case, T ---- (n -- 1)(n -- 2) (1 / ( s2 ( r ) ) .  Since s~ 

is an increasing funct ion and r _< R by hypothesis ,  we have 

J M T d M  >_ (n -- vol(M)s-~2(R).  1)(n 2) 

This  inequal i ty  and the hypothesis  (2.2) imply  the equali ty in (2.2). Then  r = R 

and this proves the theorem.  
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Let  us now suppose tha t  u r 0 on an open set of M.  

The  following integral formula  is well known (see [Ya, page 41]): 

(10) . f  {p(X,  X ) +  �89 2 - [ V X I  2 - [ ~ X b [ 2 } d M  = 0 

for every vector  field X tangent  to M,  where g is the metr ic  of M ,  s  denotes  the 

Lie derivat ive respect  to X ,  X ~ is the 1-form on M defined by X b ( Y )  = (X,  Y )  

and 5 denotes the coderivative on M induced by g -= {,/. 

Now we are going to compute  the t e rms  in the integrand of (10) for X = u. 

Firs t  we compute  V ~ u ,  

but ,  denot ing by A T the component  tangent  to M of an a rb i t ra ry  vector  A and 

using (6), we have 

V ~ , C  = ( % , ( 0 ~  - (0~, N>N))  T 

= - ( S ( r ) ( e l  - (e~, 0~)0~)) T + (0~, N)Ler 

= co~ei - coA(e~, 0~)0~ + (0~, g ) L e i ,  

then  

Ve~u = ca ei + ~ Lei. 

From this expression, s t ra ightforward computa t ions  give 

]Vul 2 = (n - 1)c~ + 2 ~  (n - 1) cAH + ~21L]2, 
]~ubl 2 = c 2 ( n -  1) 2 + c~ 2 ( n -  1) 2 H  2 + 2 ( n -  1) 2 c a s H ,  

]E~gl 2 = 4 ( n -  1)c~ + 8 ( n -  1 ) c a a H  + 4 ~ 2  ILl2, 

and, using Gauss  formula  (which gives T = (n -- 1)(n -- 2)A + (u -- 1)2H 2 - ILl 2) 

and the fact tha t ,  f rom the definitions of ~ and u, c~ 2 = s~ - lu] 2, we get 

+ - I V u l  - 

(11) =p(u,  u) + (r  -- (n -- 1)(n -- 2)A)]ul 2 -- TS~ + (n -- 1)(n -- 2)As~ 

- ( n -  1 ) ( n -  2)c~ - 2 ( n -  1 ) ( n -  2)cAaH. 

Now, f rom (9), (10) and (11), we get 

M{P(U,U + (T -- (n + 1)(n -- 2)A)]u] 2 -- s2r  + (n -- 1)(n -- 2 )}dM = 0. 

This  equality, together  wi th  the hypothesis  (2.1) and (2.2) of Theo rem 2, the fact 

t ha t  sA(r) is an increasing posit ive function (and the hypothesis  T > 0 if A < 0) 

imply  r = R a n d  we are as in the case u = 0 everywhere.  
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